Challenges of Control System Standardization across a Utility: An Overview of Approaches and Lessons Learned

Presented by: Matt Roberts, American Governor Company

with contributions from: Alabama Power, U.S. Army Corps of Engineers and Pacific Gas & Electric
Overview

• Issues Facing Utilities
• Benefits and Challenges of a System-Wide Approach
• Case Studies (programs that lasted ten years or longer)
 • Alabama Power
 • United States Army Corps of Engineers - NWP
 • Pacific Gas & Electric
• Lessons Learned and Tips
Issues Facing Utilities

• Entire Fleet of Equipment is Aging
 • Obsolescence & Availability of Spares
 • Increasing Repair Costs
 • Loss of Experience

• Historically equipment has been rehabilitated individually

• More utilities are taking a system wide approach
Benefits of System Approach

- Engineering Upfront
 - Reduced Total Costs
 - Quicker Lead Times
- Common maintenance practices
- Shared spare parts inventories
- Similar/identical operator interface
- Improved training / more experience
 - Operations / Troubleshooting
 - Quicker RTS
Challenges of System Approach

- Initial Scope Definition
 - Time / Upfront Cost / Consensus
- Scope Creep over time
- Balancing commonality vs site specific requirements
- Equipment obsolescence over course of project
- Staffing changes
- Incorporating lessons learned mid project
Case Studies

- Alabama Power
 - Standard Design
- U.S. Army Corps of Engineers
 - Customized Base Design
- Pacific Gas & Electric
 - Very Similar
• True standard package – Identical equipment between plants
• Benefits
 • Single Design Effort
 • Maximized Benefits Previously Mentioned
 • Complete Commonality between Sites
 • Quick Lead-Time for follow-on units

• Requirements:
 • Strong Similarity between Plants
 • Limited Scope
 • Strong Up-Front Design
Customized Base Design - Identical Core Equipment w/ 80% spare I/O and site specific interfacing hardware
Customized Base Design - Identical Core Equipment w/ 80% spare I/O and site specific interfacing hardware
• Benefits
 • Single Major Design Effort with Following Minor Efforts
 • Flexibility to meet site specific requirements
 • Strong Commonality between sites
 • While not identical, incredibly similar

• Requirements:
 • Loose Similarity between Plants
 • Strong Up-Front Design
 • Consistency in approach for Site Specific Customizations
 • Plan to fill in the gaps for each site
Standardized Sub-Components, Customized Implementation
Standardized Sub-Components, Customized Implementation
Standardized Sub-Components, Customized Implementation
• Benefits
 • Varied Site Specific Requirements Met
 • Similarity between Sites / Familiarity for Staff
 • Commonality of Spare Parts

• Requirements:
 • Complete Engineering Effort per Site
 • Separate “Design Standards” Engineering Effort Upfront
 • Commitment to maintaining commonality where you can
 • Good communications between all involved on present and past sites
Lessons Learned

• Consistency from engineering team is **CRITICAL** on both OEM and customer sides
• Consistency between contracting groups is a challenge
• Constantly ask “what did we do at the last project?”
• Consider equipment obsolescence – what will support be in 10 years?
• Plan for going back to incorporate lessons learned into early installations
Thank you! Any questions?

Matthew Roberts - American Governor Company
mroberts@americangovernor.com