Legacy Governor Support

A Cost-Saving Study

Roger Clarke-Johnson and Jerry Runyan
American Governor Company
1417 116th Ave NE, Suite 212
Bellevue, Washington
United States

Introduction

From the earliest mechanical governors to today’s microprocessor-controlled control systems, much has changed in the way hydroelectric powerplants are controlled, yet much remains the same. The primary functions of the governor still remain: sensitivity to the smallest frequency excursions when islanded, and a predictable, sustained Droop response when grid-connected. The question is how (and whether) to maintain the performance of legacy governors, some of which date back to the early 20th century.

This paper provides a case study of a European utility who, when faced with the prospect of an expensive governor replacement programme, came up with an innovative solution to extend the useful life of their legacy governors. The subject utility operates and maintains ten (10) low-head hydro powerplants – the oldest dating back to 1929 – with 21 generating units. Through attrition the utility had lost their hydro governor expertise. Precious few technicians had any idea how their legacy governors worked, how to maintain and calibrate them, or what to do if the governor stopped controlling correctly. Rather than risk misoperation or worse, suffer an unforced outage because a technician made a mistake, they chose instead to perform the minimum possible maintenance. Managers knew this was an untenable situation. Something had to be done with the governors, so they reached out to the Original Equipment Manufacturers (OEMs) for support. Each of three OEMs declined, stating that the governors the utility had in operation were obsolete (even the digital governors the utility had purchased just 15 years prior) and no spare parts were available. The utility pressed the OEMs for field service or technical assistance of any kind, but the OEMs declined again, saying they no longer had any qualified technicians who could work on these legacy governors. The OEMs urged the utility to convert to the latest microprocessor-controlled digital governors and high pressure hydraulic equipment, which when spread across the utility’s hydro fleet amounted to a £10M Governor Replacement Programme. The utility had not planned for this, and was rather stunned, because the problem was not with the performance of their governors – which all worked well enough – but rather, with their ability to properly maintain and calibrate them periodically.

The utility researched other options and found American Governor (AGC) in the USA, who claimed to be able to support and work on any type of governor, of any vintage, produced by any OEM. As an experiment, the utility hired AGC to evaluate three different legacy OEM governor types, at three different plants; the results of which are presented in this paper. During the course of the two-week investigation, the three disparate governors were completely disassembled, cleaned and inspected, then re-assembled and calibrated. During the course of this work, AGC was assisted by the utility’s local maintenance crews. This proved exceptionally beneficial, as the crews were provided much-needed knowledge and training on how to disassemble, reassemble and calibrate their governors, which greatly increased their confidence.

As described in the test reports provided by AGC, all three governors were found to be of high quality, with little wear and no serious problems, and in good working condition, despite the lack of periodic maintenance. Some governors needed only simple adjustments and calibration to restore their good frequency response
characteristics. For others, external repairs or refits were recommended to improve governor response. These were beyond the scope of the two-week, and the utility agreed the utility that they could do the repairs on their own, now that they well understood how the governors worked.

In summary, all three units were deemed capable of continued good service for another 10 - 25 years. There was – and is – no need to replace them, thus the utility was able to reallocate most of their £10M budget elsewhere.

Background
ESB Generation is headquartered in Dublin, Ireland, and operates and maintains a mixed fleet of hydro units, the oldest having been commissioned in the late 1930’s. Their newer units have digital governors, however, the majority of the fleet are legacy units that still have their original mechanical governors. Given the retirements and workforce attrition that had occurred over the preceding 10 years, ESB management became concerned about their ability to support the legacy governors with their current staffing. They sought technical parts and service support from each of the Original Equipment Manufacturers (OEMs), and were told their mechanical governors had become obsolete long ago, and no further support was available. Each OEM recommended that ESB upgrade/convert their mechanical governors to the OEM’s latest digital governor system. This was no minor undertaking, since ESB owned many existing powerplants with legacy mechanical or analog governors:

<table>
<thead>
<tr>
<th>Name</th>
<th>River</th>
<th>Units</th>
<th>Year:</th>
<th>Governor:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poulaphuca</td>
<td>Liffey</td>
<td>2 x 15MW</td>
<td>1937-49</td>
<td>English Electric Mechanical</td>
</tr>
<tr>
<td>Golden Falls</td>
<td>Liffey</td>
<td>2 x 4MW</td>
<td>1937-49</td>
<td>English Electric Mechanical</td>
</tr>
<tr>
<td>Leixlip</td>
<td>Liffey</td>
<td>2 x 4MW</td>
<td>1937-49</td>
<td>ASEA Analog Electric</td>
</tr>
<tr>
<td>Cliff</td>
<td>Erne</td>
<td>2 x 10MW</td>
<td>1955</td>
<td>WGC 517 Digital</td>
</tr>
<tr>
<td>Cathleen’s Falls</td>
<td>Erne</td>
<td>2 x 22.5MW</td>
<td>1952</td>
<td>ASEA Analog Electric</td>
</tr>
<tr>
<td>Carrigadroid</td>
<td>Lee</td>
<td>1 x 8MW</td>
<td>1952-57</td>
<td>Voith Mechanical</td>
</tr>
<tr>
<td>Inniscarra</td>
<td>Lee</td>
<td>1 x 15, 1 x 4MW</td>
<td>1952-57</td>
<td>Voith Mechanical</td>
</tr>
<tr>
<td>Clady</td>
<td>Clady</td>
<td>1 x 4.2MW</td>
<td>1950</td>
<td>Riva Mechanical</td>
</tr>
<tr>
<td>Ardnacrusha</td>
<td>Shannon</td>
<td>4 units; 86MW</td>
<td>1929-34</td>
<td>Alstom Digital</td>
</tr>
<tr>
<td>Turlough Hill</td>
<td>(Pump/Gen)</td>
<td>4 x 73MW</td>
<td>1974</td>
<td>Voith Digital (2009)</td>
</tr>
</tbody>
</table>

Based on OEM-submitted proposals and the amount of engineering resources necessary to implement the digital conversions, ESB estimated the overall budget for replacing all legacy governors would be around £15M. A rather daunting sum, ESB engineers decided it prudent to look beyond the OEMs to see whether there were any other companies in the world who could support their legacy governors. ESB found American Governor (AGC).

A conference call was conducted on June 30, 2010 to discuss the capabilities and experience of the company. They found that American Governor did indeed offer on-site disassembly, overhaul, reassembly, calibration, tuning and training services for all types of legacy governors, from any OEM, and had provided such services for hundreds of Woodward mechanical governors. As an example of their ability to service rare or unusual mechanical governors, AGC cited a project in the Yukon Territory (Canada) where they had disassembled, cleaned, inspected, reassembled and calibrated a belt-driven Gilkes mechanical governor from the 1940’s. The company noted that training of site personnel was an integral part of the work, and had led to higher levels of customer confidence in their ability to support this governor going forward. As a test case, ESB hired AGC to inspect, evaluate and report on the condition of three different governors at three different powerhouses: a Voith mechanical governor at Carrigadrohid; a Woodward 517 Digital at Cliff; and an ASEA analog electric at Leixlip. In the fall of 2011 a US$70K contract was let to American Governor, with work scheduled to occur during a three week period in October.
Test Case: Governor Inspections at Three Stations
American Governor dispatched two of its veteran Governor Specialists, Jerry Runyan and Bill Eberman, to perform the work in conjunction with ESB maintenance personnel. It was anticipated by AGC that the inspection and calibration process would require two days per governor to complete, and the most troublesome governors were requested to be the subject units. The following services would be performed on each governor:

- Collect or copy as much information as was available locally (drawings, manuals and operational notes)
- Strip down the governor with support from ESB maintenance personnel
- Clean all components and assess their current:
 - Identify governor parts that should be replaced on a routine basis
 - Replace bearings, bushings and seals if necessary (depending on availability from local sources)
 - Gather dimensional information that can serve as a basis for future reverse-engineering
 - Modify existing mechanical components as needed (depending on local machine shop capability)
- Reassemble the governor with support from ESB maintenance personnel
- Perform functional checks: dry stroking of the gates, dashpot adjustment, governor droop measurement
- Calibrate the unit for off-line speed control and on-line droop control
- Return unit to service

Importantly, hands-on training and instruction was provided to ESB maintenance personnel throughout the above process, to educate them on the inner workings of each governor and hence, reduce their reluctance to disassemble or re-calibrate the units. This proved to be pivotal in ESB’s subsequent decision to maintain, rather than replace, their legacy hydro governors.

A Management Review meeting at ESB headquarters in Dublin was held at the end of the two-week inspection trip. During this meeting, the results of the work at each of the three plants was discussed, including: the viability of each legacy governor type, discussions of the availability of spare parts, AGC recommendations for future maintenance. It was originally thought that a Long-Term Support Plan for the entire ESB governor fleet would need to be formulated. Such a plan would include formal and informal governor training classes tailored to the individual governor type; additional AGC service trips, and the possibility of a comprehensive reverse-engineering effort if worn parts were found and the OEM was unresponsive to ESB requests for spares or original manufacturing drawings. The author attended these meetings and had (one day prior) presented a one-day Governor 101 Training Class to ESB headquarters personnel and regional plant managers.

With the governors in such good and operable condition, ESB elected to postpone the Long-Term Support Plan effort and instead hired AGC in subsequent years, as needed, to perform similar inspections, overhauls and calibrations on other units in the ESB hydro fleet, as summarized below.

Subsequent Governor Inspection Trips
In the years following the first trip, additional governor inspections conducted. The results were the same: the subject unit governors were found to be quite serviceable and just needed a good cleaning and calibration. Excerpts from the associated trip reports are provided below.

Governor Inspection – Lee - 2013
Similar to the work done in 2011, AGC performed a detailed inspection, assessment, calibration and adjustment of the Voith mechanical governors at Lee station. The following units were inspected:

Station: Lee Location: Inniscarra, Cork
Unit 1: 15MW Kaplan OEM: Voith
Unit 2: 4MW Kaplan OEM: Voith
Unit 3: 8MW Kaplan OEM: Voith

The work scope on the mechanical governors at Lee Station were similar to the work carried out in 2011:

- Strip down the mechanical governor
- Clean up components and condition assess
- Replace bushing and seals, if parts are locally-available
- Gather dimensional information to enable future refurbishment of the mechanical governors
- Re-assemble, calibrate and re-commission the governor

Resources: 1 AG Senior Governor Specialist to assist ESB staff in performing the work
Duration: 3 weeks
On-site dates: June 17 – July 5, 2013

Governor Inspection – Clady - 2014

Similar to the work done in 2011, AGC performed a detailed inspection, assessment, calibration and adjustment of Riva mechanical governors. The following stations / units were inspected:

Station: Clady Location: Donegal

Unit 1: 4.2MW Francis OEM: Riva

The work scope on the mechanical governor at Clady Station was similar to the work carried out in 2011:

- Verify poor governor operation during start-up (water on unit)
- Test and observe wicket gate operation during manual governor control (unit unwatered)
- Disassemble the mechanical governor ballhead assembly (“Tacho-Accelerometric Head”)
- Assess condition of internal components; note any bent or damaged parts; repair if possible
- Replace o-rings, bearings, bushing and/or seals (depending on availability of parts locally)
- Re-assemble, test, and calibrate the governor
- Perform multiple starts and stops to verify performance
- Adjust off-line gains for good speed control with minimal hunting

Dates: November 3 – 7, 2014
Duration: 1 week (Monday – Friday)
Resource Requirement: 2 Senior AG Specialists to assist ESB staff in performing the work

Conclusion

Digital governor systems offer exciting new functionality, such as enhanced communication capabilities and color touchscreens that may offer on-board diagnostic and troubleshooting tools. However, the cost to convert an entire fleet of legacy governors to digital control can be daunting to European utilities who are competing in a depressed electricity market, burdened with low wholesale prices and high wind and solar feed-in tariffs. In these situations, owners of legacy governor systems will be well-served to look beyond the new digital system their OEM offers.

Legacy governors can usually provide many more years of reliable, responsive service, but they do require periodic maintenance, adjustment and overhaul. If a utility has suffered a high degree of staff turnover since the station was constructed, the internal knowledge necessary to understand how their legacy governors work, and how to properly overhaul, adjust and calibrate them and their associated governor oil pumping systems may have been lost. In this case, a third-party company may be brought in to perform the governor overhauls,
providing ad hoc training to the utility’s maintenance staff in the process. Formal classroom and hands-on training classes are also valuable tools to regain this lost knowledge.

References

Authors

Roger Clarke-Johnson graduated with Honours in Aeronautical and Astronautical Engineering from the University of Illinois (USA) and has over 29 years of experience in hydro governor systems and technology, ranging from mechanical to analog to digital governors, as well as hydraulic power systems and unit/plant control systems. Prior to joining American Governor in 2002, Roger held similar positions at General Electric, Woodward and Digitek. Remarkably, he has been working in the renewable energy industry continuously since 1981, when he joined Boeing to help design their large-scale wind turbines. He later worked for Flowind, a manufacturer of vertical-axis wind turbines, before switching from wind to hydro in 1987.

Jerry Runyan is considered one of the foremost hydro governor experts in the world. The majority of Jerry’s expertise comes from his 42 years at Woodward Governor Company (USA), where is contributed in many areas: Manufacturing, Field Service, Engineering, Marketing, Sales and Training. After retiring from Woodward in 1999, he started his own consultancy, Stevens Point Consulting, providing hydro governor consulting and troubleshooting to clients throughout the world. His governor knowledge and direct experience spans every type of governor - mechanical, analog, and digital – and nearly every OEM manufacturer; Woodward, Allis-Chalmers Pelton, Voith, and ASEA. Mr. Runyan has conducted well over 200 governor training classes and was honoured with a Lifetime Service Award from the National Hydropower Association (NHA)